Artificial General Intelligence
Artificial general intelligence (AGI) is a type of expert system (AI) that matches or surpasses human cognitive abilities throughout a vast array of cognitive tasks. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly exceeds human cognitive capabilities. AGI is thought about among the definitions of strong AI.
Creating AGI is a main objective of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey determined 72 active AGI research study and advancement projects across 37 countries. [4]
The timeline for accomplishing AGI stays a subject of continuous dispute amongst researchers and specialists. Since 2023, some argue that it might be possible in years or years; others preserve it might take a century or longer; a minority think it may never be achieved; and another minority claims that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed concerns about the rapid development towards AGI, suggesting it could be achieved sooner than lots of expect. [7]
There is argument on the precise meaning of AGI and relating to whether contemporary big language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common subject in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many professionals on AI have specified that reducing the risk of human extinction postured by AGI should be an international priority. [14] [15] Others find the advancement of AGI to be too remote to present such a danger. [16] [17]
Terminology
AGI is likewise understood as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or basic intelligent action. [21]
Some academic sources reserve the term "strong AI" for computer programs that experience life or consciousness. [a] On the other hand, weak AI (or narrow AI) has the ability to solve one specific problem however does not have general cognitive abilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the very same sense as humans. [a]
Related ideas include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical kind of AGI that is much more normally smart than humans, [23] while the idea of transformative AI relates to AI having a large effect on society, for instance, similar to the farming or addsub.wiki industrial transformation. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify 5 levels of AGI: emerging, proficient, professional, virtuoso, and superhuman. For instance, a competent AGI is specified as an AI that exceeds 50% of competent adults in a vast array of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly defined however with a limit of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have actually been proposed. Among the leading proposals is the Turing test. However, there are other well-known definitions, and some scientists disagree with the more popular techniques. [b]
Intelligence characteristics
Researchers generally hold that intelligence is needed to do all of the following: [27]
reason, use technique, solve puzzles, and make judgments under uncertainty
represent understanding, consisting of typical sense knowledge
strategy
learn
- communicate in natural language
- if needed, integrate these abilities in completion of any offered goal
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and decision making) think about additional characteristics such as imagination (the capability to form novel mental images and ideas) [28] and autonomy. [29]
Computer-based systems that display a lot of these abilities exist (e.g. see computational creativity, automated reasoning, choice assistance system, robotic, evolutionary computation, smart representative). There is debate about whether contemporary AI systems possess them to a sufficient degree.
Physical traits
Other capabilities are considered preferable in smart systems, as they may affect intelligence or help in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. relocation and control items, modification place to check out, etc).
This consists of the capability to discover and react to danger. [31]
Although the to sense (e.g. see, hear, etc) and the ability to act (e.g. relocation and manipulate things, change place to explore, etc) can be desirable for some intelligent systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that large language models (LLMs) may already be or end up being AGI. Even from a less positive perspective on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system is enough, supplied it can process input (language) from the external world in location of human senses. This analysis lines up with the understanding that AGI has never ever been proscribed a specific physical personification and therefore does not require a capability for mobility or traditional "eyes and ears". [32]
Tests for gratisafhalen.be human-level AGI
Several tests indicated to verify human-level AGI have actually been thought about, consisting of: [33] [34]
The idea of the test is that the machine needs to try and pretend to be a guy, by addressing questions put to it, and it will only pass if the pretence is fairly convincing. A substantial part of a jury, who need to not be professional about makers, need to be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would require to implement AGI, since the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are numerous problems that have actually been conjectured to need basic intelligence to resolve in addition to humans. Examples consist of computer vision, natural language understanding, and handling unforeseen circumstances while solving any real-world issue. [48] Even a particular job like translation requires a device to check out and write in both languages, follow the author's argument (factor), understand the context (understanding), and faithfully recreate the author's initial intent (social intelligence). All of these problems require to be solved at the same time in order to reach human-level device performance.
However, photorum.eclat-mauve.fr many of these tasks can now be performed by contemporary large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on many criteria for checking out understanding and visual reasoning. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The first generation of AI scientists were encouraged that synthetic basic intelligence was possible which it would exist in simply a few decades. [51] AI leader Herbert A. Simon composed in 1965: "devices will be capable, within twenty years, of doing any work a guy can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers believed they might create by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the project of making HAL 9000 as reasonable as possible according to the agreement predictions of the time. He said in 1967, "Within a generation ... the problem of creating 'expert system' will considerably be solved". [54]
Several classical AI projects, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar task, were directed at AGI.
However, trademarketclassifieds.com in the early 1970s, it became obvious that scientists had actually grossly undervalued the trouble of the task. Funding companies became doubtful of AGI and put researchers under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI objectives like "continue a casual discussion". [58] In reaction to this and the success of expert systems, both market and government pumped money into the field. [56] [59] However, self-confidence in AI stunningly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never fulfilled. [60] For the second time in twenty years, AI scientists who forecasted the impending achievement of AGI had actually been mistaken. By the 1990s, AI scientists had a credibility for making vain promises. They became reluctant to make forecasts at all [d] and prevented reference of "human level" expert system for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI attained industrial success and academic respectability by concentrating on particular sub-problems where AI can produce verifiable outcomes and commercial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the innovation market, and research in this vein is greatly moneyed in both academia and industry. As of 2018 [upgrade], development in this field was considered an emerging trend, and a fully grown stage was anticipated to be reached in more than 10 years. [64]
At the millenium, lots of traditional AI scientists [65] hoped that strong AI might be developed by integrating programs that resolve different sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up route to artificial intelligence will one day fulfill the conventional top-down route over half way, all set to offer the real-world skills and the commonsense understanding that has actually been so frustratingly elusive in thinking programs. Fully smart devices will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:
The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is truly just one practical route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this route (or vice versa) - nor is it clear why we should even try to reach such a level, given that it appears arriving would simply total up to uprooting our signs from their intrinsic meanings (thus simply reducing ourselves to the practical equivalent of a programmable computer). [66]
Modern synthetic general intelligence research study
The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the capability to please objectives in a wide variety of environments". [68] This kind of AGI, identified by the capability to maximise a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial results". The very first summertime school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a number of visitor lecturers.
As of 2023 [update], a small number of computer scientists are active in AGI research, and lots of add to a series of AGI conferences. However, significantly more scientists are interested in open-ended learning, [76] [77] which is the idea of enabling AI to continually learn and innovate like people do.
Feasibility
Since 2023, the development and possible achievement of AGI stays a subject of intense debate within the AI neighborhood. While conventional agreement held that AGI was a far-off goal, current developments have led some researchers and market figures to declare that early kinds of AGI may currently exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a guy can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century due to the fact that it would require "unforeseeable and basically unforeseeable developments" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between modern-day computing and human-level synthetic intelligence is as broad as the gulf in between existing area flight and practical faster-than-light spaceflight. [80]
A more obstacle is the absence of clearness in defining what intelligence requires. Does it require consciousness? Must it show the capability to set goals as well as pursue them? Is it simply a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are facilities such as preparation, thinking, and causal understanding required? Does intelligence need explicitly reproducing the brain and its particular faculties? Does it require emotions? [81]
Most AI researchers think strong AI can be attained in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of achieving strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, however that the present level of development is such that a date can not precisely be predicted. [84] AI experts' views on the expediency of AGI wax and wane. Four polls performed in 2012 and 2013 recommended that the typical estimate among experts for when they would be 50% confident AGI would arrive was 2040 to 2050, depending on the survey, with the mean being 2081. Of the professionals, 16.5% addressed with "never" when asked the exact same question however with a 90% self-confidence instead. [85] [86] Further present AGI development factors to consider can be found above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong predisposition towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They examined 95 forecasts made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers published a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it could fairly be deemed an early (yet still incomplete) version of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 surpasses 99% of human beings on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of basic intelligence has already been accomplished with frontier models. They composed that unwillingness to this view comes from four main factors: a "healthy apprehension about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "dedication to human (or biological) exceptionalism", or a "issue about the economic ramifications of AGI". [91]
2023 likewise marked the development of large multimodal designs (big language models capable of processing or creating multiple methods such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of designs that "spend more time believing before they react". According to Mira Murati, this ability to think before responding represents a brand-new, additional paradigm. It enhances model outputs by spending more computing power when creating the answer, whereas the model scaling paradigm enhances outputs by increasing the model size, training data and training calculate power. [93] [94]
An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the business had achieved AGI, specifying, "In my opinion, we have currently achieved AGI and asteroidsathome.net it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "better than most humans at a lot of jobs." He likewise attended to criticisms that large language models (LLMs) merely follow predefined patterns, comparing their learning process to the clinical technique of observing, hypothesizing, and verifying. These statements have sparked dispute, as they count on a broad and unconventional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show impressive adaptability, they may not totally meet this requirement. Notably, Kazemi's comments came soon after OpenAI got rid of "AGI" from the regards to its collaboration with Microsoft, triggering speculation about the company's strategic intentions. [95]
Timescales
Progress in expert system has historically gone through durations of rapid progress separated by durations when development appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to create area for further development. [82] [98] [99] For example, the computer hardware readily available in the twentieth century was not sufficient to carry out deep learning, which needs great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that quotes of the time required before a truly versatile AGI is built vary from 10 years to over a century. Since 2007 [upgrade], the consensus in the AGI research study neighborhood appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI researchers have offered a wide variety of viewpoints on whether progress will be this rapid. A 2012 meta-analysis of 95 such opinions discovered a bias towards forecasting that the start of AGI would happen within 16-26 years for modern and historical forecasts alike. That paper has been criticized for how it categorized opinions as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the traditional method utilized a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the existing deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on openly readily available and freely available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old child in very first grade. A grownup pertains to about 100 usually. Similar tests were brought out in 2014, with the IQ rating reaching an optimum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language design capable of carrying out numerous diverse jobs without particular training. According to Gary Grossman in a VentureBeat article, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to comply with their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system efficient in carrying out more than 600 different jobs. [110]
In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, contending that it showed more general intelligence than previous AI designs and showed human-level efficiency in tasks covering multiple domains, such as mathematics, coding, and law. This research study sparked a dispute on whether GPT-4 could be thought about an early, incomplete variation of artificial general intelligence, emphasizing the requirement for additional expedition and evaluation of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton stated that: [112]
The concept that this stuff might in fact get smarter than individuals - a couple of individuals believed that, [...] But the majority of people thought it was method off. And I believed it was method off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly stated that "The development in the last couple of years has actually been quite incredible", and that he sees no reason it would slow down, anticipating AGI within a decade and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within five years, AI would can passing any test at least along with people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI worker, estimated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is considered the most promising path to AGI, [116] [117] whole brain emulation can act as an alternative method. With entire brain simulation, a brain model is built by scanning and mapping a biological brain in detail, and after that copying and simulating it on a computer system or another computational device. The simulation design must be sufficiently loyal to the original, so that it behaves in virtually the very same method as the original brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been discussed in synthetic intelligence research [103] as an approach to strong AI. Neuroimaging technologies that might provide the needed comprehensive understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of sufficient quality will appear on a similar timescale to the computing power required to replicate it.
Early approximates
For low-level brain simulation, a really powerful cluster of computer systems or GPUs would be needed, offered the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by their adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a simple switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at numerous quotes for the hardware required to equate to the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For comparison, if a "calculation" was equivalent to one "floating-point operation" - a step utilized to rate present supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was accomplished in 2022.) He utilized this figure to predict the essential hardware would be readily available at some point in between 2015 and 2025, if the exponential development in computer system power at the time of composing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually developed an especially detailed and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The synthetic neuron model assumed by Kurzweil and used in lots of current artificial neural network implementations is easy compared to biological neurons. A brain simulation would likely have to catch the comprehensive cellular behaviour of biological nerve cells, presently understood only in broad overview. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would need computational powers numerous orders of magnitude bigger than Kurzweil's quote. In addition, the quotes do not account for glial cells, which are understood to play a role in cognitive processes. [125]
A basic criticism of the simulated brain approach obtains from embodied cognition theory which asserts that human embodiment is an essential element of human intelligence and is essential to ground significance. [126] [127] If this theory is right, any completely practical brain design will require to incorporate more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an option, but it is unknown whether this would suffice.
Philosophical point of view
"Strong AI" as defined in philosophy
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference between two hypotheses about expert system: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "consciousness". Weak AI hypothesis: An artificial intelligence system can (just) imitate it thinks and has a mind and consciousness.
The first one he called "strong" due to the fact that it makes a stronger declaration: it presumes something unique has happened to the machine that goes beyond those capabilities that we can evaluate. The behaviour of a "weak AI" machine would be specifically similar to a "strong AI" device, but the latter would likewise have subjective mindful experience. This use is also common in scholastic AI research and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to indicate "human level synthetic basic intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that awareness is needed for human-level AGI. Academic thinkers such as Searle do not believe that is the case, and to most expert system researchers the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it actually has mind - indeed, there would be no method to tell. For AI research study, Searle's "weak AI hypothesis" is comparable to the declaration "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have various meanings, and some elements play considerable roles in science fiction and the principles of synthetic intelligence:
Sentience (or "extraordinary consciousness"): The ability to "feel" understandings or feelings subjectively, rather than the capability to reason about perceptions. Some theorists, such as David Chalmers, utilize the term "awareness" to refer exclusively to incredible awareness, which is roughly comparable to sentience. [132] Determining why and how subjective experience develops is known as the tough issue of awareness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be conscious. If we are not mindful, then it does not seem like anything. Nagel uses the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had accomplished life, though this claim was commonly contested by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a separate individual, especially to be purposely conscious of one's own ideas. This is opposed to simply being the "subject of one's believed"-an os or debugger has the ability to be "mindful of itself" (that is, to represent itself in the exact same way it represents everything else)-however this is not what people generally imply when they utilize the term "self-awareness". [g]
These characteristics have a moral dimension. AI life would give increase to concerns of well-being and legal defense, similarly to animals. [136] Other elements of consciousness associated to cognitive capabilities are also relevant to the concept of AI rights. [137] Finding out how to incorporate sophisticated AI with existing legal and social structures is an emerging concern. [138]
Benefits
AGI might have a variety of applications. If oriented towards such objectives, AGI might help alleviate numerous problems in the world such as cravings, poverty and health issues. [139]
AGI could enhance performance and performance in many jobs. For instance, in public health, AGI could speed up medical research, notably versus cancer. [140] It might look after the senior, [141] and equalize access to fast, premium medical diagnostics. It might offer enjoyable, low-cost and tailored education. [141] The requirement to work to subsist might become outdated if the wealth produced is properly rearranged. [141] [142] This likewise raises the concern of the place of human beings in a significantly automated society.
AGI might also help to make rational choices, and to prepare for and prevent catastrophes. It could likewise help to enjoy the advantages of potentially disastrous technologies such as nanotechnology or climate engineering, while avoiding the associated dangers. [143] If an AGI's primary objective is to avoid existential catastrophes such as human termination (which might be hard if the Vulnerable World Hypothesis turns out to be true), [144] it could take steps to drastically minimize the risks [143] while decreasing the effect of these steps on our quality of life.
Risks
Existential dangers
AGI may represent multiple kinds of existential threat, which are dangers that threaten "the early extinction of Earth-originating smart life or the permanent and extreme damage of its potential for preferable future advancement". [145] The danger of human termination from AGI has been the subject of lots of disputes, however there is also the possibility that the advancement of AGI would cause a permanently problematic future. Notably, it could be used to spread and protect the set of worths of whoever establishes it. If humanity still has moral blind areas similar to slavery in the past, AGI might irreversibly entrench it, avoiding ethical progress. [146] Furthermore, AGI might help with mass monitoring and brainwashing, which could be used to develop a stable repressive around the world totalitarian regime. [147] [148] There is likewise a risk for the devices themselves. If makers that are sentient or otherwise worthy of moral factor to consider are mass developed in the future, participating in a civilizational course that indefinitely overlooks their well-being and interests could be an existential disaster. [149] [150] Considering how much AGI could improve mankind's future and help in reducing other existential risks, Toby Ord calls these existential risks "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI positions an existential threat for humans, and that this risk requires more attention, is questionable but has actually been endorsed in 2023 by lots of public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, dealing with possible futures of incalculable benefits and threats, the experts are surely doing everything possible to guarantee the best result, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll show up in a couple of years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The prospective fate of humanity has actually in some cases been compared to the fate of gorillas threatened by human activities. The contrast states that greater intelligence permitted mankind to dominate gorillas, which are now vulnerable in manner ins which they could not have actually anticipated. As an outcome, the gorilla has actually ended up being an endangered types, not out of malice, however merely as a collateral damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate mankind and that we must beware not to anthropomorphize them and translate their intents as we would for human beings. He said that people will not be "smart adequate to develop super-intelligent makers, yet unbelievably foolish to the point of giving it moronic objectives with no safeguards". [155] On the other side, the idea of critical merging suggests that almost whatever their goals, intelligent representatives will have factors to try to endure and acquire more power as intermediary steps to attaining these goals. Which this does not need having emotions. [156]
Many scholars who are concerned about existential danger supporter for more research study into solving the "control problem" to answer the question: what kinds of safeguards, algorithms, or architectures can developers execute to increase the likelihood that their recursively-improving AI would continue to behave in a friendly, rather than devastating, manner after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which might result in a race to the bottom of safety precautions in order to release products before rivals), [159] and the usage of AI in weapon systems. [160]
The thesis that AI can present existential risk also has detractors. Skeptics usually say that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other problems connected to present AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for many individuals outside of the innovation industry, existing chatbots and LLMs are already viewed as though they were AGI, resulting in more misunderstanding and fear. [162]
Skeptics often charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an irrational belief in an omnipotent God. [163] Some scientists believe that the communication projects on AI existential threat by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulatory capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other industry leaders and scientists, provided a joint declaration asserting that "Mitigating the danger of termination from AI ought to be a global top priority together with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work tasks affected by the intro of LLMs, while around 19% of employees might see a minimum of 50% of their tasks affected". [166] [167] They consider workplace employees to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI could have a much better autonomy, capability to make decisions, to user interface with other computer tools, but likewise to manage robotized bodies.
According to Stephen Hawking, the result of automation on the lifestyle will depend upon how the wealth will be rearranged: [142]
Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can end up badly poor if the machine-owners successfully lobby against wealth redistribution. So far, the trend seems to be towards the 2nd option, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to adopt a universal standard earnings. [168]
See also
Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain AI impact AI safety - Research location on making AI safe and advantageous AI positioning - AI conformance to the intended objective A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated maker knowing - Process of automating the application of maker knowing BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General game playing - Ability of artificial intelligence to play various video games Generative synthetic intelligence - AI system efficient in creating content in reaction to triggers Human Brain Project - Scientific research study job Intelligence amplification - Use of info technology to enhance human intelligence (IA). Machine principles - Moral behaviours of man-made machines. Moravec's paradox. Multi-task learning - Solving multiple device finding out jobs at the exact same time. Neural scaling law - Statistical law in maker learning. Outline of synthetic intelligence - Overview of and topical guide to synthetic intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of artificial intelligence. Transfer knowing - Artificial intelligence method. Loebner Prize - Annual AI competition. Hardware for synthetic intelligence - Hardware specially developed and enhanced for artificial intelligence. Weak expert system - Form of artificial intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the article Chinese room. ^ AI founder John McCarthy writes: "we can not yet define in general what type of computational treatments we want to call intelligent. " [26] (For a conversation of some meanings of intelligence used by expert system scientists, see approach of expert system.). ^ The Lighthill report specifically slammed AI's "grand objectives" and led the dismantling of AI research in England. [55] In the U.S., DARPA became identified to money just "mission-oriented direct research, rather than basic undirected research". [56] [57] ^ As AI creator John McCarthy writes "it would be a terrific relief to the remainder of the workers in AI if the creators of new general formalisms would reveal their hopes in a more secured type than has often held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a standard AI textbook: "The assertion that devices might potentially act intelligently (or, possibly better, act as if they were intelligent) is called the 'weak AI' hypothesis by theorists, and the assertion that devices that do so are really believing (as opposed to mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to guarantee that artificial general intelligence benefits all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is producing synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were determined as being active in 2020. ^ a b c "AI timelines: What do professionals in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and cautions of threat ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad stars from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The real threat is not AI itself but the method we deploy it. ^ "Impressed by synthetic intelligence? Experts state AGI is coming next, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might posture existential risks to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last creation that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of termination from AI should be a global top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals alert of risk of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating machines that can outthink us in general ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential threat". Medium. There is no reason to fear AI as an existential hazard. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the complete series of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on everybody to ensure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent characteristics is based on the topics covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The concept of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and bbarlock.com GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of tough exams both AI variations have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software application engineers prevented the term expert system for worry of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite development in device intelligence, artificial basic intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic synthetic intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A survey of expert opinion. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as smart as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI twilight zone in between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, but the consensus is that it is not AGI. ... If nothing else, GPT-3 informs us there is a happy medium between narrow and basic AI. ^ Quach, Katyanna. "A developer built an AI chatbot using GPT-3 that helped a male speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 jobs, from playing video games to controlling robots", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could match human intelligence in 'just a few years,' states CEO of Google's main A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, bahnreise-wiki.de The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in existing research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced quote in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable artificial intelligence for interest by the field about why a program acts the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the business's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security risk' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of artificial intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The remarkable Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI threat: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report alerts". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk posed however expert system can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, caution scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says big tech is lying about AI extinction danger". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market impact potential of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees could see their jobs affected by AI. These are the jobs most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal basic earnings due to the fact that 'in the future, manual labor will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer system programs that can solve issues and accomplish goals in the world as well as humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York: Oxford University Press, archived from the original on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, recovered 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system basic adequate to be easy to understand will not be complicated enough to behave smartly, while any system complicated enough to act wisely will be too made complex to comprehend." (p. 197.) Computer scientist Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead easy foolish. They work, but they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Choice" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from devices. For biological animals, factor and purpose come from acting in the world and experiencing the consequences. Artificial intelligences - disembodied, strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who want to get rich from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't rely on federal governments driven by project finance contributions [from tech companies] to push back.' ... Marcus details the demands that people ought to make from their governments and the tech business. They consist of openness on how AI systems work; payment for individuals if their information [are] utilized to train LLMs (large language design) s and the right to authorization to this usage; and the ability to hold tech business accountable for the damages they bring on by eliminating Section 230, enforcing money penalites, and passing stricter item liability laws ... Marcus likewise suggests ... that a brand-new, AI-specific federal agency, akin to the FDA, the FCC, or the FTC, may supply the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... develop [ing] a professional licensing regime for engineers that would operate in a comparable method to medical licenses, malpractice matches, and the Hippocratic oath in medication. 'What if, like medical professionals,' she asks ..., 'AI engineers also swore to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stymied people for decades, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has actually exposed that although NLP (natural-language processing) models can amazing feats, their capabilities are quite restricted by the quantity of context they receive. This [...] could cause [problems] for researchers who hope to use them to do things such as analyze ancient languages. Sometimes, there are couple of historic records on long-gone civilizations to function as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to generate fake videos identical from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we suggest practical videos produced using expert system that really trick individuals, then they hardly exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited evidence. Their function better looks like that of animations, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should prevent humanizing machine-learning designs used in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial basic intelligence are stymmied by the usual problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead authorities to ignore contradictory proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that need real humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared not able to reason realistically and attempted to count on its huge database of ... facts originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful but unreliable. Rules-based systems can not deal with situations their programmers did not anticipate. Learning systems are limited by the information on which they were trained. AI failures have actually currently resulted in catastrophe. Advanced auto-pilot features in automobiles, although they carry out well in some circumstances, have driven cars without alerting into trucks, concrete barriers, and parked cars and trucks. In the wrong circumstance, AI systems go from supersmart to superdumb in an instant. When an opponent is trying to manipulate and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new technologies but depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.